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Abstract 43 

People often change their evaluations upon learning about their peers’ evaluations, i.e., social 44 

learning. Given sleep’s vital role in consolidating daytime experiences, sleep may facilitate social 45 

learning and thereby further changing people’s evaluations. Combining a social learning task and 46 

the sleep-based targeted memory reactivation technique, we asked whether social learning-47 

induced evaluation changes can be modulated during sleep. After participants indicated their 48 

initial evaluation for snacks, they learned about their peers’ evaluation while hearing the snacks’ 49 

spoken names. During the post-learning non-rapid-eye-movement sleep, we re-played half of the 50 

snack names (i.e., cued snack) to reactivate the associated peers’ evaluations. Upon waking up, 51 

we found that the social learning-induced evaluation changes further enlarged for both cued and 52 

uncued snacks. Examining sleep electroencephalogram (EEG) activity revealed that cue-elicited 53 

delta-theta EEG power and the overnight N2 sleep spindle density predicted post-sleep 54 

evaluation changes for cued but not for uncued snacks. Our findings suggested that sleep-55 

mediated memory reactivation processes could strengthen social learning-induced evaluation 56 

changes.   57 

 58 

Keywords: Evaluation, social learning, targeted memory reactivation, sleep, delta-theta power, 59 

sleep spindle   60 
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Introduction 61 

 62 

Evaluations and choices are often guided by retrieval of first-hand experiences: when choosing a 63 

restaurant, we often think about our last visit, the dining experiences, and the accompanying 64 

emotional feelings (Amodio, 2019; Biderman et al., 2020; Hütter, 2022). However, in addition to 65 

using first-hand experiences to guide our choices (Murty et al., 2016; Wimmer & Büchel, 2016; 66 

Wimmer & Shohamy, 2012), we also acquire or change evaluations via observing our peers’ 67 

evaluations and choices, known as social learning (Berns et al., 2010; Campbell-Meiklejohn et 68 

al., 2010; Kendal et al., 2018). Social learning is prevalent in society, influencing everyday 69 

choices, such as purchasing snacks or books, and even sacred moral values (Brady et al., 2021; 70 

Nook & Zaki, 2015; Yu et al., 2021; Zaki et al., 2011). Specifically, social learning can be 71 

induced in lab settings: following observing peers’ evaluations, participants often change their 72 

initial evaluations (Chen et al., 2023; Huang et al., 2014; Nook & Zaki, 2015; Zaki et al., 2011). 73 

These social learning-induced evaluation changes can even last for days after the learning 74 

(Huang et al., 2014; Izuma & Adolphs, 2013). The observed long-term effect raises an intriguing 75 

yet untested question: how does memory consolidation during post-learning sleep influence the 76 

social learning effect?  77 

 78 

Mounting evidence suggests that sleep consolidates recently acquired memories via covert 79 

memory reactivation processes (Brodt et al., 2023; Klinzing et al., 2019; Rasch & Born, 2013). 80 

Employing a method known as Targeted Memory Reactivation (TMR), researchers can initiate 81 

and guide covert memory reactivation during sleep to promote memory consolidation (Oudiette 82 

& Paller, 2013; Paller et al., 2021). This TMR procedure typically consists of three phases: 1) 83 

pre-sleep learning, participants would learn materials accompanying sensory cues (e.g., auditory 84 

tones, spoken words, odor); 2) TMR during sleep, during which the experimenter will re-present 85 

the same sensory cues (i.e., memory reminders) to sleeping participants to reactivate the 86 

associated memories; and 3) post-sleep tests, upon awakening, participants would complete tests 87 

to assess the impact of TMR. Accumulating evidence has demonstrated that TMR benefits 88 

various types of memories (for a meta-analysis, see Hu et al., 2020), including speech-word pair 89 

associative learning (Cairney et al., 2017), skills learning (Antony et al., 2012; Rakowska et al., 90 

2021), spatial memories (Rudoy et al., 2009; Shanahan et al., 2018), and emotional memories 91 
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(Lehmann et al., 2016; Yuksel et al., 2023). Here, we aimed to explore the potential impact of 92 

TMR on people’s evaluations acquired through prior social learning.  93 

 94 

To date, only a few studies have explored the potential impact of sleep and/or TMR on 95 

evaluation.  For example, sleep (vs. wakefulness) promoted adaptive evaluative choices, by 96 

strengthening evaluative learning memories (Jin et al., 2023). Employing TMR, research shows 97 

that re-playing snacks’ spoken names during non-rapid eye movement (NREM) sleep could 98 

augment subjective preferences for these snacks (Ai et al., 2018). Moreover,  re-playing the 99 

sound cues paired with the prior counter-bias training during NREM sleep further reduced 100 

implicit social biases (Hu et al., 2015; but see Humiston & Wamsley, 2019). These findings 101 

suggest that sleep and/or TMR could modulate evaluations and choices, potentially through 102 

sleep-mediated reactivation of pre-sleep evaluative learning memories.   103 

 104 

Analyzing cue-elicited electroencephalogram (EEG) activity during sleep can provide insights 105 

into the underlying neural mechanisms of TMR. Specifically, cue-elicited delta (1-4 Hz) and 106 

theta (4-8 Hz) activities have been shown to predict TMR benefits on memory performance (Liu 107 

et al., 2023; Oudiette et al., 2013; Rihm et al., 2014; Schreiner et al., 2015; Xia, Chen, et al., 108 

2023). Notably, previous research also revealed the role of cue-elicited delta and theta power in 109 

predicting TMR benefits in evaluation updating (Ai et al., 2018; Xia, Antony, et al., 2023). 110 

Furthermore, substantial evidence has indicated that overnight sleep spindle is implicated in 111 

memory re-processing during sleep (Antony et al., 2019; Clemens et al., 2005; Kurdziel et al., 112 

2013; Mednick et al., 2013) and predicts the TMR benefits (Creery et al., 2015; Xia, Antony, et 113 

al., 2023). We thus investigated the neural mechanisms, focusing on the delta/theta power and 114 

the sleep spindles underlying the reactivation of daytime social learning experiences.  115 

 116 

In the present study, we employed the TMR to investigate how reactivating prior social learning 117 

experiences during NREM sleep would influence subsequent evaluation. Following the initial 118 

evaluation for snacks, participants learned their peers’ evaluations as feedback while listening to 119 

the snacks’ spoken names. Via multiple learning rounds, these spoken names would serve as 120 

memory reminders about peers’ evaluations of the snacks. During the subsequent NREM sleep, 121 

we re-played half of these spoken names to reactivate the associated peers’ evaluations. Upon 122 
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waking up, participants showed enlarged social learning-induced evaluation updating for both 123 

cued and uncued snacks. Accompanying behavioral changes, cue-elicited delta-theta EEG power, 124 

and the overnight N2 spindle density were associated with the evaluation updating for cued but 125 

not for uncued snacks. These results suggested that sleep-mediated memory consolidation 126 

processes may fortify social learning-induced evaluation updating.  127 

 128 

Methods 129 

 130 

Participants 131 

We recruited 45 participants from a local university (35 females; Age, Mean = 22.98, S.D. = 132 

2.81). Participants were excluded from subsequent behavioral and EEG analysis if the auditory 133 

cues were played fewer than four rounds (n = 9) or due to technical problems during EEG 134 

recording (n = 2), resulting in 34 participants being included in the analyses. All participants 135 

were native Chinese speakers, right-handed, not color-blind, and had normal or correct-or-136 

normal vision. In addition, they reported good sleep qualities without any history of neurological, 137 

psychiatric, or sleep disorders. All participants provided written informed consent prior to the 138 

participation and were debriefed and compensated after they completed the study. This research 139 

was approved by the Human Research Ethics Committee of the University of Hong Kong 140 

(HREC No. EA1904004). 141 

 142 

Stimuli 143 

We selected 48 snack images from the snack and food images database (Hare et al., 2011; 144 

Plassmann et al., 2007). Spoken names of snacks were generated in English using the Microsoft 145 

Azure Text-to-Speech function (language = “en-US”). The 48 snacks were then allocated to one 146 

of six experimental conditions based on each participant’s baseline evaluation (i.e., the 147 

preference rating before the social learning). To do this, all 48 snacks were first sorted in 148 

descending order based on the baseline ratings and were subsequently divided into eight 149 

subgroups following this ranked order, each consisting of six snacks. For instance, snacks in this 150 

first subgroup would rank from first to sixth, while snacks in the second subgroup would rank 151 

from seventh to twelfth, and so on. Next, the six snacks in each subgroup were randomly 152 

assigned to one of the six experimental conditions in 2 (TMR: cued vs. uncued) by 3 (Peer’s 153 
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evaluation feedback in social learning task: lower vs. consistent vs. higher) design. This 154 

procedure resulted in eight items in each of the six experimental conditions, with baseline 155 

preferences and familiarity ratings not significantly different between different conditions 156 

(ps > .087; see Table S1 for details).  157 

 158 

Design and Procedure 159 

 160 

 161 
Procedure 162 

Figure 1: A flowchart of the experiment procedure. A) The experiment included pre-

learning baseline tests, social learning of peers’ evaluation task, post-learning tests, TMR 

during NREM sleep, post-TMR immediate and 3-day delayed tests. B) An exemplar trial in 

the Evaluation tasks: Participants evaluated each of the 48 snacks using a mouse clicking on 

a 1-11 scale, ranging from not preferred at all to most preferred.. C) During the Social 

Learning task, participants learned the evaluation from their peers (a circle indicating their 

peers’ evaluation). The auditory cues (i.e., the spoken names of the snacks) were played upon 

the onset of the feedback. Half of the auditory cues were then re-played during the following 

NREM sleep to reactivate the social learning memories (i.e., the snack-peers’ evaluation 

associations). This resulted in six experimental conditions (Higher_Cued vs. Uncued; 

Lower_Cued vs. Uncued; Consistent_Cued vs. Uncued).  
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All tasks were programmed and presented by PsychoPy (2020.1.3) (Peirce et al., 2019). 163 

Participants visited the lab twice, separated by three days (Figure 1A).  164 

 165 

During the first lab visit, participants arrived at the lab at around 20:00. After cleaning up and the 166 

EEG setup, participants completed the Interpersonal Reactivity Index (IRI, Davis, 1983), the 167 

Socially Desirable Responding (SDR, Paulhus, 1984), and provided demographical information. 168 

Participants completed the following tasks in order. First, participants completed a psychomotor 169 

vigilance task (PVT, to measure alertness), a cue familiarization task (to get familiar with 170 

auditory cues and snack images), and an evaluation task (to indicate their baseline preferences 171 

for snacks). Second, participants performed a social learning task in which they learned about 172 

their peers’ evaluation of snacks (i.e., snack-peers’ rating associations) while hearing the spoken 173 

names of the snacks (i.e., memory reminders). Following the social learning task, participants 174 

completed the following post-learning tests: an affect misattribution procedure (AMP) task (to 175 

measure spontaneous evaluation), a speeded choice task (to measure choice), another evaluation 176 

task, and a cued recall task (to measure memories for peers’ ratings). Upon finishing these tasks, 177 

participants went to the overnight sleep session, wherein trained experimenters administered the 178 

TMR during NREM sleep.   179 

 180 

After approximately eight hours of bedtime (12 a.m. to 8 a.m.), participants woke up and had 181 

breakfast. After ~20 minutes of refreshing up, participants’ vigilance levels were assessed again, 182 

followed by AMP, speeded choice task, evaluation task, and cued recall task. Three days later, 183 

participants returned to the same lab and completed the same set of tasks.   184 

 185 

Psychomotor vigilance task (PVT) 186 

To test whether vigilance levels might differ across phases, participants completed a 5-minute 187 

PVT at the beginning of each phase. During the PVT, a fixation was first presented on the center 188 

of the screen with a jitter duration of 2-10 seconds. Next, a counter starting from 0 would replace 189 

the fixation. Participants shall press the button as soon as they detect the changes. Their response 190 

times (RTs) were presented on the screen as the performance feedback. We found no significant 191 

RT differences across phases, F (1.62, 53.41) = 1.78, p = .183, 𝜂𝐺
2  = .012, suggesting no 192 

significant differences in vigilance levels across phases.  193 
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 194 

Cue Familiarization Task 195 

Following the PVT, participants were familiarized with the spoken names of the snacks in the 196 

cue familiarization task. Each trial started with a 0.3 s fixation, followed by a snack image (see 197 

Figure 1 for examples), which was presented on the center of the screen for 2 s, accompanied by 198 

its spoken name (i.e., “Combos”) being played via an external speaker. The inter-trial interval 199 

(ITI) was 1 s. The task included three blocks, each containing all 48 snacks being randomly 200 

presented.  201 

 202 

Evaluation Task 203 

To assess participants’ evaluation of the snacks, we asked participants to rate their preference and 204 

familiarity with all 48 snacks four times: at pre-learning baseline, post-learning, post-TMR, and 205 

3-day delayed phases (Figure 1B). In the evaluation task, each trial began with a 0.3 s fixation, 206 

followed by the presentation of a snack image on the screen. Using a blue triangle presented on 207 

the screen, participants then evaluated their preference for the item on a 1-11 scale (1 = 208 

Extremely Unwanted, 11 = Extremely Wanted) and their familiarity with the item (1 = Extremely 209 

Unfamiliar, 11 = Extremely Familiar). Next, we calculated the evaluation changes (ΔEvaluation) 210 

as our outcome measures by subtracting the rating between every two phases: social learning 211 

effect: post-learning minus pre-learning; TMR effect: post-TMR minus post-learning; Delayed 212 

effect: delayed minus post-learning (Figure 1A). 213 

 214 

Social Learning Task 215 

During the social learning task, participants learned their peers’ evaluations (Figure 1C). 216 

Participants were informed that their peers were students from the same university. The learning 217 

included 240 trials in 5 blocks, each containing all 48 snacks. Each trial started with a blank 218 

screen (1.2 ~ 1.8 s), followed by a fixation cross (0.5 s). The snack image was then presented in 219 

the center of the screen for 1.5 s, together with participants’ baseline evaluation as indicated by a 220 

triangle on the preference rating scale. The scale disappeared on the screen, leaving the same 221 

snack image on the screen for 1.5 s as a buffer. Afterward, the peer’s rating was indicated by a 222 

circle on the same preference rating scale for 3 s, while the spoken name of the snack was aurally 223 

played (~1 s) to be linked with the peers’ preference ratings. Following a 1.5 s blank screen, with 224 
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only snack images being presented on the screen, participants rated the preference again (3 s 225 

maximum) using the mouse. Note that the peer ratings feedback was pre-programmed for each 226 

participant: feedback was either consistent, higher, or lower than participants’ pre-learning 227 

baseline ratings. In the higher or lower conditions, the group ratings would be 1, 2, or 3 points 228 

above or below the participants’ initial ratings, respectively. To increase the authenticity of the 229 

feedback, the chance of 3-point difference feedback was half of the probability of receiving 1 or 230 

2-point difference feedback. We divided 48 snacks into the six experimental conditions to ensure 231 

the baseline preference ratings were comparable across conditions (for details, see Stimuli).  232 

 233 

Affect Misattribution Procedure (AMP) Task 234 

To measure the implicit evaluation for snacks, we performed the AMP task (Payne & Lundberg, 235 

2014) in the post-learning, post-TMR, and delayed tests. Each trial of the AMP task started with 236 

a 0.3 s fixation, followed by a snack image serving as a prime. The snack image was shortly 237 

presented for 75 ms, followed by a 925 ms blank screen. Afterward, a Tibetan character was 238 

presented on the screen for 0.1 s and replaced by a mosaic image as a mask. Participants decided 239 

as soon as possible whether the target character was pleasant (“A”) or unpleasant (“L”). The 240 

AMP task contained six blocks. Forty-eight snacks were randomly presented in each block. We 241 

then calculated the update of implicit evaluation (ΔImplicit evaluation) by subtracting the 242 

percentage of choosing “pleasant” between post-TMR/delayed and post-learning phases at the 243 

item level. 244 

 245 

Speeded Choice Task 246 

Participants made speeded choices (purchase or not) toward the snacks using their own 247 

compensation in the speeded choice task. Participants completed this task three times: in the 248 

post-learning, post-TMR, and delayed tests. Each trial started with a 0.3 fixation, followed by a 249 

snack image presented on the screen for 1.5 s maximum. Participants were required to respond as 250 

soon as possible whether they would like to purchase the snack or not (“A” for yes, “L” for no). 251 

The speeded choice task contains three blocks, with 48 snacks randomly presented in each block. 252 

We then calculated the choice updating (Δ%Choose) by subtracting the percentage of choosing 253 

“Yes” between post-TMR/delayed and post-learning phases at the item level. 254 

 255 
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Cued Recall Task 256 

To measure participants’ memory of their peers’ ratings for each snack, we asked them to recall 257 

and indicate their peers’ ratings in the post-learning, post-TMR, and delayed phases. In the post-258 

learning tests, the cued recall task contained two blocks: a test with feedback block and a test 259 

without feedback block. In the feedback block, each trial began with a 0.3 s fixation, followed by 260 

a snack image and a preference rating scale being visually presented, accompanied by the spoken 261 

name of the snack. Participants clicked on the scale to indicate their peers’ preference rating. 262 

Following a 1 s blank screen, the correct ratings were presented as feedback, together with the 263 

same snack image accompanied by its spoken name aurally played. In the no-feedback block, 264 

trials were similar to those in the feedback block, except no feedback was presented. In both the 265 

post-TMR immediate and delayed phases, participants indicated their memories of peers’ ratings 266 

for each snack without feedback.  267 

 268 

Memory error was defined as the absolute difference between participants’ recall of the feedback 269 

and the presented feedback rating. We also coded participants’ memory accuracy as follows: If 270 

participants’ recollection of peers’ ratings aligned with the feedback directions (e.g., higher, 271 

lower, consistent), the memory was deemed correct. Conversely, the memory was deemed 272 

incorrect. Thus, accuracy was coded regardless of the numerical discrepancies between the peers’ 273 

ratings and the recall.  274 

 275 

TMR during NREM sleep 276 

Half of the spoken names of the snacks (24 out of 48, e.g., “Combos”) and eight additional 277 

spoken names of food items (e.g., “Celery”) were played during the TMR. These eight stimuli 278 

were never presented before the TMR and were not paired with any peers’ ratings, thus serving 279 

as non-memory control cues. Throughout the night, pink noise was played as the background 280 

noise. Well-trained experimenters monitored the EEG brainwaves and identified the sleeping 281 

stages for TMR administration. For online sleep monitoring, F3/F4, C3/C4, P3/P4, O1/O2, EOG, 282 

and EMG, with online reference at CPz, were selected. Upon detection of stable slow-wave sleep 283 

for at least 5 minutes, the names of the snacks were played via a loudspeaker placed above the 284 

participant’s head. In each block of the TMR, all 32 cues (24 snack cues and eight control cues) 285 

were randomly played (~1 s) with an inter-stimulus interval (ISI) of 4 s. A 30 s interval separated 286 
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each round of playing. The TMR phase was terminated when 20 cueing rounds were completed 287 

or reached 2 a.m., whichever came first. Cueing was stopped immediately when participants 288 

showed signs of micro-arousal or awakening and entered N1 or REM sleep. Cueing would be 289 

resumed when participants returned to stable slow-wave sleep. Participants were excluded if they 290 

received fewer than 4 TMR rounds (n = 9).  291 

 292 

EEG Acquisition 293 

Continuous EEGs were recorded with an eego amplifier and a 64-channel gel-based waveguard 294 

cap based on an extended 10–20 layout (ANT Neuro, Enschede, and Netherlands). The online 295 

sampling rate was 500 Hz, with CPz as the online reference and AFz as the ground electrode. 296 

The horizontal electrooculogram (EOG) was recorded from an electrode placed 1.5 cm to the left 297 

external canthus. The impedance of all electrodes was maintained below 20 kΩ during the 298 

recording. During sleep, two additional electrodes were attached to both sides of the chins to 299 

measure electromyography (EMG) with a bipolar reference.  300 

 301 

EEG Preprocessing  302 

Sleep EEG was processed offline using custom Python (3.8.8) scripts and MNE-Python (0.23.4) 303 

(Gramfort et al., 2013). To facilitate subsequent EEG preprocessing and analyses, the overnight 304 

EEG was cropped from 300 s ahead of the first and 300 s after the last TMR cue. Unused 305 

channels (EOG, M1, and M2) were removed from the cropped EEG data. Cropped raw EEG was 306 

filtered with a bandpass filter of 0.5-40 Hz and was notch-filtered at 50 Hz. Afterward, the EEG 307 

was downsampled to 250 Hz. Bad channels were then visually detected, removed, and 308 

interpolated. The EEG data were next re-referenced to the whole-brain average, followed by 309 

segmentation into [-15 s to 15 s] epochs relative to the onset of the cue. Bad epochs were then 310 

visually detected and removed from further analyses. Artifacts-free EEG data were further 311 

segmented into [-2 s to 6 s] epochs for time-frequency analysis. The number of remaining epochs 312 

for each condition is provided in Table S2. The overnight continuous EEG data were also 313 

retained for sleep staging and overnight spindle detection.  314 

 315 

Time-frequency analysis 316 
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For the time-frequency analysis, we focused on nine fronto-central channels (F1/2, Fz, FC1/2, 317 

FCz, C1/2, Cz) in accordance with recent studies examining auditory processing during sleep 318 

(Xia, Yao, et al., 2023; Züst et al., 2019)). Morlet wavelets transformation with variance cycles 319 

(three cycles at 1 Hz in length, increasing linearly with frequency to 15 cycles at 30 Hz) was 320 

applied to the [-2 s to 6 s] epochs to compute time-frequency representation (TFR) for the 1-30 321 

Hz EEG. Next, epochs were further segmented into [-1s to 4s] epochs to eliminate edge artifacts. 322 

The trial-level spectral power was normalized (Z-scored) using [-1 s to -0.2 s] baseline of the 323 

averaged spectral power of all trials.  324 

 325 

Offline Automated Sleep Staging 326 

The offline sleep staging was conducted with the YASA toolbox (0.6.1) (Vallat & Walker, 2021) 327 

implemented in Python (3.8.8). Raw overnight continuous EEG data were re-referenced to FPz 328 

according to the YASA recommendation. Sleep staging was based on C4 (or C3 if C4 was 329 

marked as a bad channel) and EOG (see Table S3 for sleep stage information).  330 

 331 

Spindle Detection 332 

The automated spindle detection was implemented in the YASA toolbox (0.6.1) (Vallat & 333 

Walker, 2021). The spindle detection algorithm was applied separately to the preprocessed 334 

overnight continuous EEG data and artifacts-free [-15 s to 15 s] epochs. We applied three 335 

thresholds in identifying a spindle: 1) relative power, which indicated the power in the sigma 336 

frequency range (11-16 Hz) relative to the total power in the broadband frequency (1-30 Hz), 2) 337 

correlation, the correlation between sigma-filtered signal and broadband signal, and 3) RMS, 338 

moving root mean square (RMS) of the sigma-filtered signal. Overnight spindle detection was 339 

applied on the continuous preprocessed EEG data at the Cz during N2 (relative power = 0.2, 340 

correlation = 0.65, RMS = 1.5) and N3 (relative power = None, correlation = 0.50, RMS = 1.5) 341 

sleep stages separately. We adopted different parameters for the N2 and N3 sleep stages because 342 

they showed distinct EEG characteristics. Spindle density was then calculated using the 343 

following formula:  344 

𝑆𝑝𝑖𝑛𝑑𝑙𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑁2) =  
𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑖𝑛𝑑𝑙𝑒𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 (𝑁2)

𝐿𝑒𝑛𝑔𝑡ℎ (𝑁2/𝑚𝑖𝑛)
 345 
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The spindle detection algorithm was also applied to the artifacts-free segmented data, with the 346 

same parameters as the overnight spindle detection of the N3 sleep stage, as most of our TMR 347 

cues were played during the N3 sleep. Subsequently, the algorithm generated a series of binary 348 

values (spindle presence or absence) to indicate whether a spindle was detected at each timepoint 349 

(each timepoint represented 4 ms). The cue-elicited spindle probability was next determined by 350 

computing the proportion of detected spindle across trials at each timepoint  (Schechtman et al., 351 

2021; Xia, Yao, et al., 2023).  352 

 353 

Statistical Analysis 354 

First, we investigated the impact of social learning and TMR on changes in evaluation, implicit 355 

evaluation, speeded choice, and memory error. We conducted repeated-measure ANOVA with R 356 

(4.2.2) and the afex package (1.2.1) implemented in R. We further examined the effects of social 357 

learning, TMR, and subsequent memory on evaluation changes. Due to the limited number of 358 

trials after separating trials into correctly vs. incorrectly remembered, we adopted an item-level 359 

linear mixed model. To deal with the singular fitting problem, we chose a Bayesian linear mixed 360 

model (BLMM) with R using the brms package (2.20.4) (Bürkner, 2021). Since evaluations were 361 

only tested once in each phase, the evaluation changes at the item level are discrete (from -8 to 362 

8). Therefore, we adopted a cumulative distribution in the BLMM and transformed the 363 

evaluation changes into ordinal-level data. The following BLMM was applied:  364 

 365 

ΔEvaluation ~ TMR*Feedback*Subsequent Memory +  366 

(1|Feedback*Subsequent Memory|SubjectID) [1] 367 

 368 

Next, we investigated whether cues would elicit significantly different EEG power changes and 369 

spindle probability. We employed a cluster-based two-tailed one-sample permutation test, 370 

implemented in the MNE toolbox with 1000 randomizations and a statistical threshold of 0.05.  371 

 372 

To quantify the relationship between cue-elicited power and evaluation changes, we continued to 373 

utilize item-level BLMM. The cue-elicited power was extracted from the significant clusters at 374 

the item level. We also adopted a cumulative distribution and transformed the evaluation changes 375 

to ordinal-level data. Because we considered that the cueing repetition could impact the signal-376 
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to-noise ratio of EEG data, we took the repetition number (N) as a control variable. The 377 

following BLMM was employed:  378 

ΔEvaluation ~ Power*Feedback + N + (1+Power*Feedback|SubjectID) [2] 379 

 380 

The same item-level BLMM was employed to investigate the relationship between cue-elicited 381 

spindle probability and evaluation changes: 382 

ΔEvaluation ~ Spindle Prob.*Feedback + N + (1+Spindle Prob.*Feedback|SubjectID) [3] 383 

 384 

We were also interested in the impact of overnight spindle density on the evaluation changes. 385 

The following subject-level BLMMs were utilized for cued and uncued snacks, respectively:  386 

ΔEvaluation ~Spindle Density*Feedback + (1+ Spindle Density|SubjectID) [4] 387 

 388 

Statistical inferences for the BLMM were based on the 95% highest density interval (HDI) of the 389 

posterior distribution. Effects were considered significant if the 95% HDI did not encompass 0. 390 

Note that we focused on performance from higher and lower conditions, wherein participants 391 

were expected to change their evaluations.  392 

 393 

 394 

Results 395 

 396 

Effects of social learning and TMR on evaluation changes 397 

We began by examining whether social learning modulated evaluations of the snacks. In a TMR 398 

(cued vs. uncued) by feedback (higher vs. lower) repeated measure ANOVA, we found the 399 

expected social learning effect: feedback significantly modulated ΔEvaluation (i.e., changes of 400 

evaluation from pre- to post-learning; F (1, 33) = 23.42, p < .001, 𝜂𝐺
2  = 0.18; Figure 2A). 401 

Specifically, when peers’ evaluations were higher than participants’ initial evaluations, 402 

participants’ evaluations increased accordingly. In contrast, the TMR effect  was not significant 403 

(F (1, 33) = 0.02, p = .877, 𝜂𝐺
2  < 0.01) nor was the TMR by feedback interaction (F (1, 33) = 404 

0.34, p = .564, 𝜂𝐺
2  < 0.01), indicating that cued and uncued snacks showed comparable social 405 

learning effects before sleep and TMR manipulation.  406 

 407 
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We next examined the impact of sleep TMR on the ΔEvaluation from the post-learning to post-408 

TMR phase. We again found a significant main effect of feedback, such that the ΔEvaluation was 409 

significantly increased for the higher than for the lower feedback condition (F (1, 33) = 4.72, p 410 

= .037, 𝜂𝐺
2  = 0.03; Figure 2B). This significant feedback effect on ΔEvaluation indicated that the 411 

difference between higher vs. lower feedback directions further enlarged from post-learning to 412 

post-TMR phases. Contrary to our hypotheses, neither the TMR (cued vs. uncued) nor the TMR 413 

by feedback interaction was significant (F (1, 33) < 0.01, p = .994, 𝜂𝐺
2  < 0.01; F (1, 33) = 0.01, p 414 

= .911, 𝜂𝐺
2  < 0.01, respectively).  415 

 416 

We further examined the 3-day delay effect of sleep TMR on the ΔEvaluation from post-learning 417 

to the 3-day delayed phase. We found a non-significant trend of the TMR effect: cued snacks 418 

showed numerically higher ΔEvaluation than uncued snacks (F (1, 33) = 3.69, p = .063, 𝜂𝐺
2  = 419 

0.02; Figure 2C). However, neither feedback (F (1, 33) = 1.23, p = .275, 𝜂𝐺
2   = 0.01) nor 420 

interaction effects (F (1, 33) = 0.18, p = .677, 𝜂𝐺
2  < 0.01) were significant. We postulated that the 421 

cueing might increase familiarity, thus enhancing preferences (see Ai et al., 2018). Indeed, in a 422 

TMR by feedback repeated measure ANOVA on the familiarity rating, we found that cueing 423 

significantly enhanced familiarity ratings of snacks in the 3-day delayed session (F (1, 33) = 424 

8.28, p = .007, 𝜂𝐺
2

  = 0.03), but not in the post-learning nor post-TMR tests (ps > .116). Thus, the 425 

numerically higher evaluations of cued snacks could be attributed to their higher familiarity at 426 

the delayed phase.  427 
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 428 

 429 

Effects of social learning and TMR on memory errors  430 

Here, we examined whether TMR changed memory errors, i.e., the absolute numerical 431 

differences between participants’ recalled peers’ ratings and the presented peers’ ratings. In the 432 

TMR by feedback repeated measure ANOVA, we did not find a significant main or interaction 433 

effect in the post-learning phase (ps > .487). In the post-TMR phase, we observed a non-434 

significant trend of increased memory error for the higher than the lower feedback conditions (F 435 

(1, 33) = 4.01, p = .054, 𝜂𝐺
2

 = 0.02). However, no significant main effect of TMR (F (1, 33) = 436 

0.96, p = .333, 𝜂𝐺
2  < 0.01), and the interaction effect was observed (F (1, 33) = 0.02, p = .879, 𝜂𝐺

2  437 

< 0.01). In the delayed phase, no significant main effects nor interaction effects were found 438 

(ps > .230).  439 

 440 

Relationship between subsequent memory accuracies and evaluation changes 441 

Although TMR did not influence memory errors when recalling peers’ ratings, we examined 442 

whether evaluation changes were associated with memory accuracies, i.e., whether participants’ 443 

recall of the peers’ ratings aligned with the feedback directions. Therefore, we conducted 444 

Figure 2: Effects of feedback (i.e., peers’ ratings either higher or lower than pre-learning 

baseline ratings) and TMR (cued vs. uncued) on ΔEvaluation from (A) pre-learning to post-

learning, (B) post-learning to post-TMR, and (C) post-learning to delayed phases. The error 

bars indicated the 95% confidence intervals. The horizontal grey dashed line represents the 

mean of ΔEvaluation at the corresponding phase.  ***: p < .001. *: p < .05. 
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feedback by TMR by subsequent memory (correctly vs. incorrectly remembered) three-way 445 

item-level BLMM for ΔEvaluation. 446 

 447 

For the ΔEvaluation from pre-learning to post-learning, we found a significant interaction 448 

between subsequent memory and feedback (median = 2.93, 95% HDI [1.93, 3.85], Figure 3A). 449 

Post-hoc analysis revealed that when participants correctly remembered the feedback direction, 450 

the ΔEvaluation in the higher feedback condition was significantly higher than that in the lower 451 

feedback condition (higher vs. lower, mediandiff = 1.55, 95% HDI [1.14, 1.98]). Conversely, 452 

when participants incorrectly remembered the feedback direction, the ΔEvaluation in the higher 453 

feedback condition was significantly lower than in the lower feedback condition (mediandiff = -454 

1.54, 95% HDI [-2.18, -0.85]). The other main and interaction effects were insignificant (-1.52< 455 

median <0.32).   456 

 457 

For the ΔEvaluation from post-learning to post-TMR, we similarly found a significant 458 

subsequent memory by feedback interaction effect (median = 0.74, 95% HDI [0.03, 1.46], Figure 459 

3B). Post-hoc analyses revealed that when participants correctly remembered the feedback 460 

direction,  the ΔEvaluation in the higher feedback condition was significantly higher than that in 461 

the lower condition (mediandiff = 0.37, 95% HDI [0.10, 0.65]). In contrast, when participants 462 

incorrectly remembered the feedback direction, the ΔEvaluation did not differ between the 463 

higher and the lower condition (mediandiff = -0.21, 95% HDI [-0.68, 0.25]).  464 

 465 

For the ΔEvaluation from post-learning to the delayed phase, the same BLMM again revealed a 466 

significant interaction effect (median = 0.71, 95% HDI [0.01, 1.40], Figure 3C). Post-hoc 467 

analyses revealed that when participants correctly remembered the feedback direction, the 468 

ΔEvaluation between the higher and the lower condition did not significantly differ (mediandiff = 469 

0.10, 95% HDI [-0.19, 0.38]). In contrast, when participants incorrectly remembered the 470 

feedback direction, the ΔEvaluation of the higher condition was significantly lower than that in 471 

the lower condition (mediandiff = -0.75, 95% HDI [-1.23, -0.30]). These results suggested that the 472 

evaluation changes were related to the memory of the feedback directions across all three phases.  473 
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 474 

Effects of social learning and TMR on implicit evaluation and speeded choice 475 

Observing the social learning effects on subjective evaluation changes, we further examined 476 

whether social learning and TMR could impact implicit evaluation (ΔImplicit evaluation based 477 

on AMP performance) and speeded choices (%Choose based on the speeded choice task) by 478 

conducting TMR by feedback repeated measure ANOVAs.  479 

 480 

In the speeded choice task, we observed a significant main effect of feedback in %Choose from 481 

post-learning to post-TMR phases, that participants were more willing to choose the snacks in 482 

the higher than the lower feedback conditions (F (1, 32) = 4.83, p = .035, 𝜂𝐺
2

  = 0.03). No 483 

significant effect of TMR nor their interaction was found (ps >.316; Figure S1A). Similarly, no 484 

significant effect of feedback, TMR, nor their interaction in %Choose from post-learning to 485 

delayed phases was observed (ps > .283; Figure S1B).  486 

 487 

In the AMP, we did not observe a significant effect of feedback, TMR, nor their interaction in the 488 

ΔImplicit evaluation from post-learning to post-TMR (ps > .312) and to delayed phases 489 

(ps > .398) (Figure S1C-D).  490 

 491 

Figure 3: Effects of subsequent memory, TMR, and feedback on ΔEvaluation from (A) pre-

learning to post-learning, (B) post-learning to post-TMR, and (C) post-learning to delayed 

phases. The horizontal lines indicated the 95% highest density interval (HDI), and vertical 

gray lines correspond to 0. The dot indicated the median point. If the 95% HDI did not 

encompass 0, the result would be considered significant.  
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Cue-elicited delta-theta power predicted evaluation changes of cued snacks 492 

Even though we did not observe the TMR effect on Δevaluation during the post-TMR phases, we 493 

proceeded to perform sleep EEG analyses to investigate the neural mechanism that could drive 494 

the overall enhanced social learning effect for both cued and uncued snacks.  495 

 496 

We first examined whether presenting cues during sleep would elicit significant EEG power 497 

changes relative to the pre-cue baseline (i.e., -1000 to -200 ms prior to the cue onset). We found 498 

that the cues significantly enhanced the 1-30 Hz power during an early cluster (-96 to 2928 ms 499 

relative to the cue onset, pcluster = .001, corrected for multiple comparisons by cluster-based 500 

permutation test; see Methods) but reduced the 5.5 – 18.5 Hz power in a later cluster (2132 to 501 

4000 ms, pcluster = .025, Figure 4A). However, we did not find significant EEG power differences 502 

between the higher and lower feedback conditions (pclusters > .085, Figure S2B-D). Similarly, the 503 

control cues enhanced the 1-30 Hz EEG power in the early cluster (-360 to 3028 ms relative to 504 

the cue onset, pcluster = .001) but reduced the 8.5 to 17.5 Hz power in the later cluster (2136 to 505 

4000 ms, pcluster = .047, Figure 4B). However, further analysis did not reveal significant EEG 506 

differences between memory and control cues (pclusters > .217, Figure S2A). These EEG power 507 

changes suggested that both memory and control cues were processed during sleep.  508 

 509 

We next examined whether memory cue-elicited EEG power could predict the Δevaluation of 510 

cued snacks by employing the BLMM. We extracted cue-elicited delta-theta power (1-8 Hz) and 511 

sigma power (12-16 Hz) within the early identified cluster and the 0-2 s at the item level. We 512 

selected the 0-2 s because this time window captured the early cluster yet did not overlap with 513 

the late cluster. The EEG power by feedback BLMM showed a significant interaction (higher vs. 514 

lower, mediandiff = 0.05, 95% HDI [0.01, 0.08], Figure 4C), such that the cue-elicited delta-theta 515 

power predicted the post-TMR immediate evaluation changes for cued snacks as a function of 516 

feedback (Δevaluation from post-learning to post-TMR phase). Post-hoc analyses showed a 517 

significant positive prediction of delta-theta power for Δevaluation (median = 0.04, 95% HDI 518 

[0.01, 0.06]) in the higher feedback condition, but not in the lower feedback condition (median = 519 

-0.01, 95% HDI [-0.04, 0.02]). This result indicated that the higher the cue-elicited delta-theta 520 

power, the larger the changes in evaluations were in the higher feedback condition compared to 521 

the lower feedback condition.  522 
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 523 

We further examined whether cue-elicited delta-theta power predicted delayed ΔEvaluation. 524 

However, no significant interaction effects were found (higher vs. lower, mediandiff = 0.01, 95% 525 

HDI [-0.02, 0.06], Figure 4D). Additionally, we did not observe significant effects of cue-elicited 526 

sigma power in either immediate (mediandiff = 0.04, 95% HDI [-0.02, 0.09]) and delayed 527 

ΔEvaluation (mediandiff = -0.00, 95% HDI [-0.06, 0.06]). 528 
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 529 

 530 

Overnight N2 sleep spindle density predicted evaluation changes for cued snacks 531 

Figure 4: Cue-elicited EEG Power and ΔEvaluataion. A) Memory cue (higher, lower, and 

consistent) and B) control cue-elicited power spectral. The topography on the left-top and 

right-top corners indicated the power at each channel at the early and late clusters, 

respectively. The contour highlighted significant clusters. The effect of memory cue-elicited 

delta-theta power (1-8 Hz) on ΔEvaluation of cued snacks from C) post-learning to post-

TMR and D) post-learning to delayed phases. The black line below the red and blue density 

plot indicated the 95% highest density interval (HDI) for higher and lower feedback 

conditions respectively. The bottom black line indicates the difference higher vs. lower 

feedback conditions. The dot indicated the median point. If the 95% HDI did not encompass 

0, the result would be considered significant. 
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Given the sleep spindle’s crucial role in sleep-mediated memory consolidation (Antony et al., 532 

2019), we further examined the relationship between cued-elicited and overnight spindle 533 

activities and the evaluation changes.  534 

 535 

First, for cue-elicited spindle activity, we found that compared to the pre-stimulus baseline, both 536 

memory (pcluster = .003) and control cues (pcluster = .016) elicited significantly higher spindle 537 

probabilities (Figure S3A) approximately 1 second after the cue onset. However, there was no 538 

significant difference between memory vs. control cue-elicited spindle probability, nor among 539 

the different feedback conditions within memory cues (cluster-based permutation tests, 540 

pclusters > .497, Figure S3B). Furthermore, the cue-elicited spindle probability did not predict 541 

ΔEvaluation for the cued snack in both the immediate (mediandiff = 2.10, 95% HDI [-3.49, 7.50]) 542 

and the delayed phase (mediandiff = -2.03, 95% HDI [-7.81, 3.45]).  543 

 544 

Next, we investigated the relationship between overnight spindle density and ΔEvaluation for 545 

cued and uncued snacks separately. For the cued snacks, the subject-level BLMM revealed that 546 

the overnight N2 spindle density predicted overnight ΔEvaluation (from post-learning to post-547 

TMR), as indicated by the significant spindle density by feedback interaction (higher vs. lower, 548 

mediandiff = 0.17, 95% HDI [0.03, 0.31], Figure 5A). That is, higher overnight spindle density 549 

was associated with increased evaluation changes for the higher feedback condition than the 550 

lower feedback condition.  551 

 552 

Again, no such effects were observed in the 3-day delayed test (mediandiff = 0.09, 95% HDI [-553 

0.08, 0.25], Figure 5C), nor were observed for uncued snacks in either overnight or delayed 554 

ΔEvaluation (mediandiff = -0.01, 95% HDI [-0.18, 0.16], Figure 5B; mediandiff = 0.02, 95% HDI 555 

[-0.20, 0.22], Figure 5D).   556 
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    557 

Figure 5: The relationship between overnight N2 Spindle Density and ΔEvaluation of cued 

snacks or uncued snacks from post-learning to post-TMR phases (A, B) and from post-

learning to delayed phases (C, D). The vertical gray lines correspond to 0. The horizontal red 

and blue lines indicated the 95% highest density interval (HDI) for higher and lower 

feedback conditions respectively. The bottom black line indicates the difference higher vs. 

lower feedback conditions. The dot indicated the median point. If the 95% HDI did not 

encompass 0, the result would be considered as significant. 
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Discussion 558 
 559 

People often change their evaluations and opinions upon learning about their peers’ evaluations 560 

and choices, i.e., social learning (Berns et al., 2010; Campbell-Meiklejohn et al., 2010; Kendal et 561 

al., 2018). Moreover, sleep impacts social and non-social decision-making (Ben Simon et al., 562 

2022; Dickinson & McElroy, 2017; Holbein et al., 2019; Venkatraman et al., 2011). Combining 563 

the social learning paradigm with sleep-based targeted memory reactivation (TMR), we 564 

investigated whether reactivating the daytime social learning experience during non-rapid-eye-565 

movement (NREM) sleep could further promote social learning-induced evaluation changes. We 566 

found that the social learning-induced evaluation changes enlarged following one night of sleep, 567 

though TMR did not selectively enhance these changes. Despite the lack of cueing effect, 568 

examining sleep EEG activity showed that the cue-elicited delta-theta (1-8 Hz) EEG power and 569 

the overnight N2 spindle density predicted the overnight evaluation changes of cued snacks. 570 

Together, we provided new evidence that the sleep-mediated memory reactivation processes 571 

could fortify evaluation changes induced by social learning.  572 

  573 

TMR has been shown to benefit various types of learning by promoting sleep-mediated memory 574 

consolidation (Hu et al., 2020). However, research on TMR’s impact on social learning is 575 

limited. A previous study endeavoured to examine how TMR influences interpersonal trust yet 576 

reported no significant sleep nor TMR effect (Strachan et al., 2020). Although we did not find a 577 

significant TMR effect in the post-TMR immediate test, it was noteworthy that sleep EEG 578 

activity related to memory reactivation facilitated overnight evaluation changes for cued but not 579 

uncued snacks. Specifically, for cued snacks, we found that both cue-elicited delta-theta power 580 

and the overnight N2 spindle density differentially predicted evaluation changes between the 581 

higher and lower feedback conditions. Mounting evidence suggests that these two EEG features 582 

characterize cue-elicited and spontaneous memory reactivation during sleep, respectively 583 

(Clemens et al., 2005; Mednick et al., 2013; Petzka et al., 2022; Schönauer et al., 2017; Schreiner 584 

et al., 2021). Specifically, these findings are consistent with previous TMR studies that also 585 

demonstrated the beneficial role of cue-elicited delta-theta power in evaluation updates (Ai et al., 586 

2018; Xia, Antony, et al., 2023) and long-term memory maintenance (Liu et al., 2023; Oudiette 587 

et al., 2013; Rihm et al., 2014). Moreover, sleep spindles are instrumental to memory re-588 
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processing during sleep (Antony et al., 2019; Petzka et al., 2022),  such that category- and even 589 

item-specific neural representation could be evident during cue-elicited spindle activity (Cairney 590 

et al., 2018; Liu et al., 2023). A previous TMR study also found that the spindle density during a 591 

nap supported the TMR cueing benefits (Creery et al., 2015). Our results further suggest that the 592 

sleep spindles could support overnight evaluation changes implicating social learning, 593 

presumably via memory reactivation-related processes.  594 

 595 

Our findings contribute to the theoretical understanding of how memory-related processing 596 

impacts evaluations in social learning and sleep (Amodio, 2019; Biderman et al., 2020). We 597 

found that only when participants could correctly remember the feedback direction they showed 598 

the social learning effect by following peers’ evaluations. Contrary to previous research that 599 

focused on memory interference that weakens memories (Biderman et al., 2023), our study 600 

aimed to change evaluation by promoting memories through sleep-mediated memory 601 

reactivation. Building on previous TMR and sleep research that aims to enhance evaluative 602 

memory or familiarity to update evaluations (Ai et al., 2018; Jin et al., 2023), we further showed 603 

that TMR and overnight sleep influenced social learning-induced evaluation changes.  604 

 605 

In addition to memory accuracies that capture episodic retrieval of peers’ evaluations, we also 606 

measured participants’ familiarity ratings towards the snacks. Intriguingly, we found that TMR 607 

increased familiarity with the cued snacks in the 3-day delayed session, which may influence the 608 

delayed evaluations. This finding aligned with well-established findings that people preferred 609 

familiar over unfamiliar snacks (Aldridge et al., 2009; Raudenbush & Frank, 1999) and the 610 

findings that merely re-playing snacks’ names during sleep could enhance people’s preference 611 

toward these snacks (Ai et al., 2018). Notably, the TMR’s benefits in strengthening familiarity 612 

emerged in the delayed but not in the immediate test. This finding is consistent with recent 613 

research showing that TMR often showed delayed benefits in memory performance (Cairney et 614 

al., 2018; Rakowska et al., 2021). One intriguing question that warrants future research is the 615 

respective impacts of episodic memory and familiarity on human evaluations and decision-616 

making, and how sleep may influence different retrieval processes that support decision-making.  617 

 618 
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Limitations and future directions shall be discussed. First, we did not find a significant TMR 619 

effect on evaluation changes, even though item-level cue-elicited EEG activity predicted 620 

evaluation changes for cued snacks. One possibility is that the reactivation may generalize to 621 

uncued snacks, given that cued and uncued snacks share the same learning context (Oudiette et 622 

al., 2013; Schechtman et al., 2023). Future research shall test whether and when generalization 623 

occurred. Second, the classic social learning paradigm adopted here involved passive observation 624 

of peers’ evaluations in laboratory settings. Secondly, given that social learning often happens 625 

during real-life interpersonal interactions (Pan et al., 2022; Zhang & Gläscher, 2020), future 626 

research shall examine the role of sleep and TMR in consolidating more realistic social learning 627 

experiences. Lastly, while people are intrinsically motivated to follow peers’ opinions (Klucharev 628 

et al., 2009), given the universal need to seek social belongingness (Baumeister & Leary, 1995; 629 

Izuma, 2013), our study did not manipulate extrinsic motivations involved in many social 630 

learning scenarios. For example, successful social learning can lead to social rewards, while 631 

unsuccessful learning may incur punishments (Molho et al., 2020). Given that motivational 632 

processes could bias memory reactivation during sleep (Sterpenich et al., 2021; Wilhelm et al., 633 

2011), future research shall consider manipulating motivational processes during social learning 634 

and how sleep and memory reactivation interact with motivation to change behavior.   635 

 636 

In conclusion, we found that the social learning-induced evaluation changes became more 637 

pronounced after sleep, irrespective of whether or not the corresponding memories were 638 

exogenously reactivated during sleep.  Sleep EEG activity, such as the cue-elicited delta-theta 639 

power and the overnight N2 spindle activity, supported the evaluation changes for the cued 640 

snacks. Our research contributes to the theoretical understanding of memory-based evaluation by 641 

highlighting the significance of offline sleep-mediated memory reactivation processes. 642 

Considering social learning can influence moral decision-making (Yu et al., 2021) and healthy 643 

behavior (Bavel et al., 2020; Chung et al., 2020; Nook & Zaki, 2015; Templeton et al., 2016), 644 

using TMR and sleep in conjunction with social learning may offer insights into fostering 645 

adaptive behaviors in a social and healthy context.    646 
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